El ejemplo más simple de la tangente es la "recta tangente" a una curva unidimensional en el plano. Gráficamente, la recta tangente es una línea que "sólo toca" la curva en un punto, por lo que si se mueve ligeramente, este punto de contacto se convierten en dos.
Si le preguntas a Wolfram|Alpha por la recta tangente a una función en un punto especifico, te responde tanto en forma gráfica y algebraica/numérica:

Tenga en cuenta que cerca del punto de tangencia, la recta y la curva son casi idénticas, la recta casi se sobrepone a la curva en ese punto. Las tangentes son importantes: porque a menudo es mucho más fácil contestar preguntas acerca de las funciones lineales, y las tangentes proporcionan una forma de aproximarse a una relación complicada con una relación lineal (una línea o un plano). Es también la razón por la tangente se llama "linealización" o "aproximación lineal" de la relación.
Por ejemplo, supongamos que usted necesita saber la raíz cuadrada de 3,9. Un cálculo muy aproximado sería de 2, ya que 3,9 es aproximadamente 4, y 2 = sqrt (4). Aún mejor sería linealizar la función y = sqrt (x) en el punto x = 4, y usar esto para encontrar una estimación:
Esto indica que la aproximación lineal a sqrt (x) en x = 4 es x/4 + 1. Poner x = 3.9 en esta aproximación nos dará 3.9/4 + 1 = 1.975, que es un valor muy cercano al valor real de la raíz cuadrada de 3.9, un número irracional que los seis primeros dígitos son 1.97484